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Tensor properties of added-mass and damping coefficients
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Abstract. It has been shown that in the context of a linear theory for a floating body with six degrees of free-
dom each of the 6 × 6 added-mass and damping matrices contains three distinct Cartesian second-order ten-
sors in regard to translational, rotational and interaction between translational and rotational oscillations. As
a result of this, a new technique based on the transformation law of second-order tensors is introduced for
motion analysis of offshore platforms which can be used as an alternative to the common methods in offshore
engineering.
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1. Introduction

In marine hydrodynamics, like other branches of continuum mechanics, it is customary to use
index notation and summation convention when writing equations in a compact form. Since a
marine vehicle is usually assumed to be a rigid body, and a rigid body in a three-dimensional
space generally has six degrees of freedom, the range of indices in marine hydrodynamics is
assumed to be 1 to 6, rather than the usual range of 1 to 3. This range convention helps
to write equations in a very compact form, but sometimes the resulted compactness hides
some valuable information. One of the important aspects, which is hidden and ignored due to
the traditional range convention of marine hydrodynamics, is the tensor character of added-
mass and damping coefficients of immersed and floating bodies. If mαβ denotes the added-
mass coefficients of an immersed body, where α and β as usual range 1 to 6, it is shown in
Section 2 that mαβ contain three distinct Cartesian second-order tensors in three-dimensional
space.

In the study of tensor properties of suspension particles, Happel and Brenner [1, Chap-
ter 5] obtained similar tensors. Their study is limited to the case of a rigid particle immersed
in an unbounded fluid, whose results can be used for an immersed marine structure. Here the
theory is extended to the case of a floating body. As a result, the powerful tools of tensor
analysis, which have been used in other branches of mechanics for many years, can now be
applied in marine hydrodynamics. An application of this method in the response analysis of
a truss spar platform is shown in Section 4.

Throughout this article Greek indices range from 1 to 6, Latin indices range from 1 to 3
and the summation convention is implied for repeated indices. Also, the word “tensor” is
used to refer to tensors, pseudo-tensors and some quantities that obey the transformation
law of a tensor, and, unless it is explicitly specified, by a “tensor” is meant a tensor in that
broad inexact sense. The mathematical background of the stated material can be found in
[2–5].
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2. Second-order tensors of radiation problem

2.1. Motion in unbounded fluid

We shall start with the radiation problem of an immersed body. It is well-known that the
kinetic energy T of the fluid domain can be written as [6]:

T = 1
2

mαβ Uα Uβ, (1)

where Ui is the translational velocity of the rigid body at an origin fixed to the body, Ui+3 is
the angular velocity of the body and mαβ are added-mass coefficients of the body. In Equa-
tion (1), α and β are dummy indices, it follows that mαβ are symmetric coefficients. Replacing
Greek indices with Latin indices and expanding the right-hand side of this equation, it follows
that

T = 1
2
(mij Ui Uj +mi+3, j Ui+3 Uj + mi, j+3 Ui Uj+3 +mi+3, j+3 Ui+3 Uj+3). (2)

If one defines mi+3, j+3 = Iij and mi, j+3 =Jij , then because mαβ =mβα, it follows from the sec-
ond definition that mi+3, j =Jji . Therefore, denoting Ui+3 by �i , Equation (2) can be written as

T = 1
2
mij Ui Uj + 1

2
Jji �i Uj + 1

2
Jij Ui�j + 1

2
Iij �i�j . (3)

Now, since the kinetic energy T on the left-hand side of Equation (3) is a zeroth-order tensor
(a scalar) and Ui and �i in each term on the right-hand side of Equation (3) are components
of two first-order tensors (two vectors), it follows from the quotient rule that mij , Jij and
Iij must be components of three distinct Cartesian second-order tensors. One can call mij ,
Jij and Iij the components of the added-mass, added-product of inertia and added-moment
of inertia tensors, respectively. Alternatively, we prefer to call them the components of the
zeroth-moment, first-moment and second-moment added-mass tensors, respectively. For each
tensor, we shall use both names interchangeably.

2.2. Effect of a free surface

Now we shall consider the linear radiation problem of a floating body. Following Newman
[7, pp. 285–300] the generalized radiation force Fα acting on a rigid floating body can be writ-
ten as

Fα =−Aαβ U̇β −Bαβ Uβ, (4)

where Aαβ and Bαβ are added-mass and damping coefficients, respectively, and a dot denotes
differentiation with respect to time. Replacing Greek indices with Latin indices and using �i

in place of Ui+3, we may expand Equation (4) into the following two equations

Fi =−Aij U̇j −Ai, j+3 �̇j −Bij Uj −Bi, j+3 �j ,

Mi =−Ai+3, j U̇j −Ai+3, j+3 �̇j −Bi+3, j Uj −Bi+3, j+3 �j . (5)

Now defining Aij = m̃ij , Ai, j+3 = S̃ij , Ai+3, j+3 = Ĩij , Bi, j+3 =Dij , Bi+3, j+3 =Eij , and taking
into account the symmetry of Aαβ and Bαβ [7, p. 296], we have that Equation (5) takes the
following form

Fi =−m̃ij U̇j − S̃ij �̇j −Bij Uj −Dij �j ,

Mi =−S̃j i U̇j − Ĩij �̇j −Dji Uj −Eij �j . (6)
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Because on the left-hand side of Equation (6) Fi and Mi are components of the force and
moment vectors (two first-order tensors) and on the right-hand side of this equation Ui , U̇i ,
�i and �̇i are components of the velocity, acceleration, angular velocity and angular acceler-
ation vectors (four first-order tensors), it follows from the quotient rule that m̃ij , S̃ij , Ĩij , Bij ,
Dij , and Eij , must be components of six distinct Cartesian second-order tensors. In Equa-
tion (6) m̃ij , S̃ij and Ĩij are components of the added-mass, the added-product of inertia and
the added-moment of inertia tensors of a floating body, respectively. In analogy with mij , Jij

and Iij , we shall call Bij , Dij and Eij , respectively, the components of the zeroth-moment,
first-moment and second-moment-damping tensors. One may refer to the nine second-order
tensors mij , Jij , Iij , m̃ij , S̃ij , Ĩij , Bij , Dij and Eij as radiation tensors. We shall refer to
three tensors mij , m̃ij and Bij as zeroth-moment-radiation tensors; to three tensors Jij , S̃ij

and Dij as first-moment-radiation tensors and to Iij , Ĩij and Eij as second-moment-radia-
tion tensors. Zeroth- and second-moment-radiation tensors are symmetric tensors. This fol-
lows directly from the symmetry of mαβ , Aαβ and Bαβ .

By using a similar approach as used here, we can show that for the linear radiation prob-
lem of a floating body, in addition to the added-mass and damping matrices, the 6×6 hydro-
static restoring matrix also contains three distinct Cartesian second-order tensors in regard
to translational, rotational and interaction between translational and rotational degrees of
freedom.

3. Tensor properties of radiation coefficients

Having shown that radiation coefficients mαβ , Aαβ and Bαβ contain nine distinct second-order
tensors, we have made available all powerful tools of tensor analysis for the radiation prob-
lem of an immersed or a floating body. Some of these tools are related to the problem of
obtaining the components of a tensor in one coordinate system when these components are
known in another coordinate system. We shall express the rotation, reflection and translation
laws for radiation tensors in this section.

3.1. The transformation law of radiation tensors

Consider two right-handed rectangular Cartesian coordinate systems xi and x′
i with the same

origin, where the primed coordinate system x′
i is obtained by rotating the unprimed coordi-

nate system xi about the common origin. It is known that, if Rij are components of a sec-
ond-order tensor in the xi coordinate system, they transform to components R′

ij in the x′
i

coordinate system by the following transformation law

R′
ij =aik ajl Rkl, (7)

in which aij is the direction cosine or the transformation symbol. For e′
i and ei , respectively,

as unit basis vectors of primed- and unprimed-coordinate systems, aij is defined as

aij = e′
i · ej = cos(x̂′

i , xj ). (8)

Since it is shown that each of the nine radiation tensors is a second-order tensor, clearly
Equation (7) will be valid for each of them. Hereafter we use Rij to refer to any of the nine
radiation tensors in general. Using Equation (7), the tranformation law for mij , Jij and Iij

in matrix form can be written as

[m′]= [a] [m] [a]T , [J ′]= [a] [J ] [a]T , [I ′]= [a] [I ] [a]T . (9)
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Equation (9) shows that, although mij , Jij and Iij are related to the same body and to each
other through mαβ but in a rotated coordinate system, they can be obtained independently.

As a consequence of the transformation law (7), the component of any radiation tensor
Rij in the direction of an arbitrary unit vector n=ni ei is Rij ni nj . Also the first, second and
third invariants of radiation tensor Rij can be found from the following relations

I1 =Rii, I2 = 1
2
(Rij Rij −Rii Rjj ), I3= 1

6
(Rii Rjj Rkk −3Rii RjkRjk+2Rij RjkRki). (10)

In addition, since zeroth- and second-moment radiation tensors are symmetric tensors, their
principal values are all real and the corresponding principal directions are mutually orthog-
onal to each other. Furthermore, the maximum (minimum) value of a tensor component is
equal to the maximum (minimum) principal value. Moreover, if the immersed or floating body
has a plane of symmetry, the direction perpendicular to that plane is a principal direction of
radiation tensors and the other two principal directions lie in the plane of symmetry.

It should be mentioned that, in practice, it is more convenient to obtain radiation
coefficients of a rotated body rather than those coefficients for a body in a rotated coordi-
nate system. This can be done by considering the xi and x′

i coordinate systems as inertia and
body-fixed coordinate systems, respectively, such that before rotation x′

i coincides with the xi

coordinate system. If the radiation coefficients are known in the body-fixed coordinate system,
we have for the rotated body

Rij =aki alj R′
kl, (11)

where aki can be assumed as the object rotation matrix.

3.2. Radiation tensors and improper orthogonal transformations

An orthogonal transformation, like the one governed by Equation (8), is defined to be a
proper transformation when det (aij ) is equal to +1 and an improper transformation when
det (aij ) is equal to −1. A proper transformation preserves the handedness of the coordinate
system, whereas an improper transformation changes the handedness. A second-order tensor
is a quantity that obeys the transformation law (7), whether the transformation is proper or
improper. On the other hand, a psuedo-tensor is a quantity whose transformation law is sim-
ilar to that of a tensor but has det(aij ) as a coefficient on its right-hand side. Therefore a
pseudo-tensor differs from a tensor when the transformation is an improper one.

Now consider two rectangular Cartesian coordinate systems xi and x′
i with the same origin

where x′
i is obtained from xi by an improper orthogonal transformation. Because the transla-

tional velocity is a first-order tensor (a polar vector) and the angular velocity is a first-order
pseudo-tensor (an axial vector), under transformation of xi to x′

i , we have

Ui =aki U
′
k, �i =−aki �

′
k. (12)

A similar equation can be written by replacing free index i in Equation (12) with j and
changing the dummy index k with l. Then it follows that UiUj and �i�j are components of
two second-order tensors while �iUj and Ui�j are components of two second-order pseudo-
tensors. Now because T is a scalar and because the double-dot product of two second-order
pseudo-tensors is a scalar, it can be deduced from Equation (3) that mij and Iij are compo-
nents of two tensors, while Jij is the component of a pseudo-tensor, i.e.,

m′
ij =aik ajl mkl, J ′

ij =−aik ajl Jkl, I ′
ij =aik ajl Ikl . (13)
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To study the behaviour of added-mass and damping tensors of a floating body under
improper orthogonal transformations, we refer to Equation (6). In this equation, Fi , Ui , and
U̇i are components of three polar vectors and Mi , �i , and �̇i are components of three axial
vectors. Therefore, S̃ij and Dij which map an axial\polar vector to a polar\axial vector are
the components of two second-order pseudo-tensors; and m̃ij , Ĩij , Bij and Eij which map a
polar\axial vector to another polar\axial vector are the components of four tensors. In other
words, we can write

S̃′
ij =−aik ajl S̃kl, D′

ij =−aik ajl Dkl. (14)

and

m̃′
ij =aik ajl m̃kl, Ĩ ′

ij =aik ajl Ĩkl,

B ′
ij =aik ajl Bkl, E′

ij =aik ajl Ekl. (15)

Equations (13), (14) and (15) show that the zeroth-moment and second-moment radiation
tensors obey the transformation law of a tensor while the first-moment radiation tensors obey
the transformation law of a pseudo-tensor. If the components Tij are used to refer to the
components of one of the zeroth- or second-moment radiation tensors and the components
Pij are used to refer to the components of one of the first-moment radiation tensors, then
Equations (13)–(15) can be summarized in matrix form as follows

[T ′]= [a] [T ] [a]T ,
[
P ′]=−[a] [P ] [a]T . (16)

Equation (16) can be used to study the effect of body symmetries on the radiation tensors
of an immersed or a floating body. Assume that a body has a plane of symmetry and the xk-
axis of the unprimed coordinate system is perpendicular to that plane. Now consider a primed
coordinate system such that it is the reflection of unprimed coordinate system in the symme-
try plane. Then the transformation symbol will be

ak
ij =

{
−1 : i = j =k,

: k =1,2,3,
δij : otherwise.

(17)

where δij is the Kronecker delta. It means that, apart from one of the leading diagonal ele-
ments which is −1, the rest of matrix [a] is the same as the identity matrix. Therefore it fol-
lows that det(aij )=−1, so the transformation defined by Equation (17) is an improper one.
Hence, Equation (16) governs the transformation. On the other hand, due to the symmetry of
the body, there must be no difference between the components of tensor T and pseudo-tensor
P in primed- and unprimed-coordinate systems. In other words, due to the body symmetry,
Tij and Pij remain invariant under the transformation (17). Consequently, Equation (16) takes
the following form

[T ]= [a] [T ] [a]T , [P ]=−[a] [P ] [a]T . (18)

Now if Equation (17) is substituted in Equation (18), because only zero is equal to its addi-
tive inverse, it follows that some of the Tij and Pij components corresponding to a symmetric
body must be zero. Observing the results of substitution of Equation (17) in Equation (18) for
three cases of k =1,2,3 reveals the following symmetry rules:

Let the xk-axis, (k =1,2,3), be perpendicular to the symmetry plane of the body then:

1. For matrix [T ], corresponding to a tensor T, all off-diagonal elements in the kth-row and
kth-column are zero.
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2. For matrix [P ], corresponding to a pseudo-tensor P, only off-diagonal elements in the
kth-row and kth-column are non-zero.

These rules can be used to find the zero components of tensors and pseudo-tensors corre-
sponding to a body with 1, 2 or 3 orthogonal symmetry planes without doing the matrix mul-
tiplications of Equation (18). For other kinds of symmetry aij will be defined by an equation
different from Equation (17) but Equation (18) is still valid. The final results are given in the
literature [see for instance, 1, pp. 183–192].

3.3. Parallel-axes theorem for radiation tensors

Consider two coordinate systems xi and x′
i both fixed with respect to a body at O and O ′

such that the corresponding axes of the two coordinate systems are parallel. If Ui and U ′
i

denote the components of the translational velocity of the body at O and O ′, respectively,
and �i is the component of the angular velocity of the body, then because O and O ′ can be
assumed as two points of the rigid body and because e′

i = ei , one can write

Ui =U ′
i − εijk�jdk , (19)

where εijk is the component of the alternator tensor and dk is the component of the posi-
tion vector of O ′ with respect to O. Introducing the anti-symmetric tensor components
Hij =−εijkdk, we observe that Equation (19) takes the following forms

Ui =U ′
i + Hik�k or Uj =U ′

j + Hj l �l . (20)

Substituting for Ui and Uj from Equation (20) in Equation (3) and taking into account
that T is an invariant, and that U ′

i and �i are arbitrary and generally non-zero, we obtain
the translation law for the tensor components mij , Jij and Iij which in matrix form can be
written as follows:

[
m′]= [m],

[
J ′]= [m] [H ]+ [J ],

[
I ′]= [H ] [m] [H ]T + [J ]T [H ]+ [H ]T [J ]+ [I ]. (21)

These equations can also be expressed in terms of tensor components in the primed coordi-
nate system, i.e.,

[J ]= [m′] [H ]T + [J ′], [I ]= [H ] [m′] [H ]T + [J ′]T [H ]T + [H ] [J ′]+ [I ′]. (22)

The last equation is similar to that of Happel and Brenner [1, Formula 5–4.10]. For a floating
body, if one derives from Equation (6) the scalar quantities FiUi and Mi�i and substitutes
for Ui and Uj from Equation (20), then, since the total power FiUi +Mi�i is an invariant,
a transformation law similar to Equation (21) will be obtained for added-mass and damp-
ing tensors. In summary, if R0, R1 and R2 are used to denote zeroth-, first- and second-
moment radiation tensors in general, then the translation law for radiation tensors of a body,
immersed or floating, can be written as

R′0 =R0, R′1 =R0 ·H +R1, R′2 =H ·R0 ·HT +R1T ·H +HT ·R1 +R2. (23)

Equation (23) shows that only zeroth-moment radiation tensors, which are independent of
the choice of coordinate system are truly second-order tensors. The first-moment and second-
moment radiation tensors are not precisely tensor quantities, since they are dependent on the
position of the origin of coordinate system. One may call R1 and R2 generalized tensors.
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Figure 1. Sketch of truss-spar platform.

4. Application of transformation method

In order to show the application of the transformation method in the response analysis of
offshore structures we shall consider a truss-spar platform as shown in Figure 1. A 1:100
scaled model of this platform has been the subject of few experimental studies [8,9]. In Fig-
ure 1 the x1x3- and x2x3-plane of coordinate system are planes of symmetry. Therefore, using
symmetry rules of Section 3.2, it can be shown that, in the context of a linear radiation-
diffraction model, both heave and yaw are independent of all the other five degrees of free-
dom; surge and pitch are dependent only on each other; and so are sway and roll. We shall
consider the motion of the platform in heave, surge and pitch.

In the context of a linear theory, it is assumed that the platform is composed of two
separate bodies, i.e., a surface-piercing cylindrical hull and an immersed truss. The hydrody-
namic interactions between the hull and the truss, and among the various elements of the
truss, are assumed to be of second- and higher-order, and therefore neglected. Moreover, it
is well-known that in deep water the wave motion decays rapidly in depth, therefore as an
approximation in the radiation problem, because the truss is far below the free surface, the
truss is modelled as a body oscillating in an unbounded fluid. Consequently, the added-mass
coefficients of the truss are assumed to be independent of frequency. In addition, it is assumed
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Table 1. Natural periods and standard deviations of the truss spar.

Natural periods (sec) Standard deviationsa (m or deg)

Estimated Measuredb Estimated Measuredb Simulatedb

Heave 24·4 25·0 0·545 0·531 0·3659
Pitch 62·4 64·4 0·913 1·287 0·8821
Surge 511 510 1·959 — —

a For JONSWAP wave spectrum with H1/3 =15 m and T0 =15 sec.
b Stansberg et al. [9].

that the diameter of the hull is not too large to radiate significant waves. Therefore, taking
also into account that the natural frequencies of a spar platform are relatively low, the radia-
tion damping due to the hull motions is neglected and the added-mass coefficients of the hull
are assumed to be independent of frequency.

As shown in Figure 1, the truss section has four identical bays. Excluding the heave plates,
which are placed at the bottom of each bay, all substructures of the truss are made of circu-
lar cylindrical members. Therefore, their added-mass coefficients can be obtained by transfor-
mation of the coefficients of a typical horizontal circular cylinder. Using this technique, the
added-mass coefficients of one bay of the truss about its local axes is obtained. The results
will be valid for the other three identical bays. Then, the parallel-axes theorem is used to
derive the coefficients of each bay about the origin of the global coordinate system of the
platform at its centre of gravity. The same method is used to add the contributions of the
remaining parts of the truss, the heave plates and the hull to obtain the added-mass coeffi-
cients of the whole structure. The added-mass coefficients obtained from this method can be
used to calculate the natural periods of the platform. In Table 1 the results of this calcula-
tion are compared by the measured values reported by Stansberg et al. [9]. The good agree-
ment obtained between the calculated and measured results indicates that the transformation
approach is valid and can achieve good accuracy.

As the above example indicates, in contrast to the common method of Morison’s equa-
tion [10] and normal-component approach, it is not necessary to apply the transformation
method to each and every element of the structure. In other words, when substructure B can
be produced by rotating, reflecting or translating substructure A, the radiation coefficients of
B can be obtained from those of A by using the appropriate transformation law, rather than
from direct calculations. This reduces the amount of calculations greatly.

This advantage becomes more significant if the wave excitation and viscous forces acting on the
truss spar can also be obtained by a method different from Morison’s equation. With this purpose
and based on the transformation method, a model was proposed and used [11] for the dynamic-
response analysis of the truss spar in Figure 1. Details of the calculations and the model are given
in [11]. The estimated motions obtained from this model are given in Table 1 where the measured
and simulated results of Stansberg et al. [9] are also included. It can be seen that the transformation
method can efficiently be applied for dynamic-response analysis of truss-spar platforms.

5. Conclusions

Each of the 6 × 6 radiation matrices associated with an immersed or a floating body can be
partitioned into four 3 × 3 sub-matrices. The diagonal sub-matrices correspond to symmetric
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second-order tensors. The off-diagonal sub-matrices are the transposes of each other and cor-
respond to a second-order pseudo-tensor. As a result, transformation laws of a second-order
tensor in rotation, reflection and translation of coordinate systems can be applied for radi-
ation coefficients. The dynamic-response analysis of offshore structures like truss-spar plat-
forms can be performed by the transformation method. One may investigate if this method
can deliver the same level of accuracy and efficiency for other types of offshore structures.
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